Варианты решений заданий C6 ЕГЭ по математике
Варианты решений заданий C6 ЕГЭ по математике
Варианты решений заданий C6 ЕГЭ по математике
Решение заданий С6 по математике
Условие: Часть 2 ЕГЭ по математике: №13/ C1 №14/ C2 №15/ C3 №16/ C4 №18/ C5 №19/ C6 Ещё задания части 2: №13/ C1 №14/ C2 №15/ C3 №16/ C4 №18/ C5 №19/ C6
Число p равно произведению 11 различных натуральных чисел, больших 1. Какое наименьшее число натуральных делителей (включая единицу и само число) может иметь число p?
Решение:
Любое натуральное число N представимо в виде произведения
N = (p1^k1)*(p2^k2)*... и т.д.,
где p1, p2 и т.д. - простые числа, а k1, k2 и т.д. - целые неотрицательные числа.
Например,
15 = (3^1)*(5^1)
72 = 8*9 = (2^3)*(3^2)
Так вот, общее количество натуральных делителей числа N равно
(k1+1)*(k2+1)*...
Итак, по условию, p = N1*N2*...*N11, где
N1 = (p1^k[1,1])*(p2^k[1,2])*...
N2 = (p1^k[2,1])*(p2^k[2,2])*...
...,
а это значит, что
p = (p1^(k[1,1]+k[2,1]+...+k[11,1]))*(p2^(k[1,2]+k[2,2]+...+k[11,2]))*...,
и общее количество натуральных делителей числа p равно
(k[1,1]+k[2,1]+...+k[11,1]+1)*(k[1,2]+k[2,2]+...+k[11,2]+1)*...
Это выражение принимает минимальное значение, если все числа N1...N11 являются последовательными натуральными степенями одного и того же простого числа, начиная с 1: N1 = p, N2 = p^2, ... N11 = p^11.
То есть, например,
N1 = 2^1 = 2,
N2 = 2^2 = 4,
N3 = 2^3 = 8,
...
N11 = 2^11 = 2048.
Тогда количество натуральных делителей числа p равно
1+(1+2+3+...+11) = 67.
Ответ: 67
Задание C6
Условие:
Найдите все натуральные числа,
не представимые в виде суммы двух взаимно простых чисел, отличных от 1.
Решение:
Каждое натуральное число может быть либо четным (2*k), либо нечетным (2*k+1).
1. Если число нечетное:
n = 2*k+1 = (k)+(k+1). Числа k и k+1 всегда взаимно простые
(если есть некоторое число d, являющееся делителем x и y, то число |x-y| тоже должно делиться на d. (k+1)-(k) = 1, то есть 1 должно делиться на d, то есть d=1, а это и есть доказательство взаимной простоты)
То есть мы доказали, что все нечетные числа могут быть представлены в виде суммы двух взаимно простых.
Исключением по условию будут являться числа 1 и 3, поскольку 1 вообще нельзя представить в виде суммы натуральных, а 3 = 2+1 и никак иначе, а единица в качестве слагаемого не подходит по условию.
2. Если число четное:
n = 2*k
Тут придется рассмотреть два случая:
2.1. k - четное, т.е. представимое в виде k = 2*m.
Тогда n = 4*m = (2*m+1)+(2*m-1).
Числа (2*m+1) и (2*m-1) могут иметь общий делитель только такой (см. выше), на который делится число (2*m+1)-(2*m-1) = 2. 2 делится на 1 и 2.
Но если делитель равен 2, то получается, что нечетное число 2*m+1 должно делиться на 2. Этого не может быть, поэтому остается только 1.
Так мы доказали, что все числа вида 4*m (то есть кратные 4) тоже могут быть представлены в виде суммы двух взаимно простых.
Тут исключение - число 4 (m=1), которое хотя и может быть представлено в виде 1+3, но единица в качестве слагаемого нам по-прежнему не подходит.
2.1. k - нечетное, т.е. представимое в виде k = 2*m-1.
Тогда n = 2*(2*m-1) = 4*m-2 = (2*m-3)+(2*m+1)
Числа (2*m-3) и (2*m+1) могут иметь общий делитель, на который делится число 4. То есть либо 1, либо 2, либо 4. Но ни 2, ни 4 не годятся, поскольку (2*m+1) - число нечетное, и ни на 2, ни на 4 делиться не может.
Так мы доказали, что все числа вида 4*m-2 (то есть все кратные 2, но не кратные 4) тоже могут быть представлены в виде суммы двух взаимно простых.
Тут исключения - числа 2 (m=1) и 6 (m=2), у которых одно из слагаемых в разложении на пару взаимно простых равно единице.
Ответ: 1,2,3,4,6